The ten-membered heterocyclic ring asssumes a distorted chair conformation giving this conformation to the molecule as a whole. The ring is approximately symmetrical with respect to a pseudo-twofold axis through S 1 and C 7 and to a pseudo-mirror plane passing through the middle of bond $\mathrm{C} 1-\mathrm{C} 6$. The rotational symmetry is dominant: the asymmetry parameters (Duax \& Norton, 1975) are $\Delta_{2}=13.8$ and $\Delta_{m}=29.1$. The symmetry distortion mainly results from the large difference of the torsion angles of the pair $\mathrm{S} 1-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6$ and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 3-$ C7. Two fused benzene rings are nearly planar with the maximum deviations from the least-squares planes 0.009 (4) for C5 and 0.013 (4) \AA for C9. The dihedral angle of benzene-ring planes is $5.13(10)^{\circ}$.
$\mathrm{N} 1-\mathrm{H} 100$ and $\mathrm{N} 2-\mathrm{H} 200$ bonds are intraannular with torsion angles $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 100$ of $-31.3(2.2)$ and $\mathrm{C} 8-\mathrm{C} 13-\mathrm{N} 2-\mathrm{H} 200$ of $-28.6(2.6)^{\circ}$. The shortness of the $\mathrm{N} 1 \cdots \mathrm{O} 3$ and $\mathrm{N} 2 \cdots \mathrm{O} 4$ distances [2.755 (2) and 2.770 (2) \AA, respectively] suggests there are two intramolecular hydrogen bonds, the $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O} 3$ and $\mathrm{N} 2-\mathrm{H} 200 \cdots \mathrm{O} 4$
angles being 103.5 (2.5) and $95.6(2.4)^{\circ}$, respectively. One of the two N atoms forms an intermolecular hydrogen bond $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O}$, where O 1 belongs to the molecule related by $x+1, y, z$. The $\mathrm{N} 1 \cdots \mathrm{O} 1$ distance is 2.859 (3) \AA and the $\mathrm{N} 1-\mathrm{H} 100 \cdots \mathrm{O} 1$ angle is $148.1(2.8)^{\circ}$. Thus the crystal structure is built from chains of molecules linked by hydrogen bonds; these chains run in the [100] direction.

This work was supported by project R.P.II. 10 from the Polish Ministry of National Education.

References

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. I. New York: IFI/Plenum.
Knollmuller, M. (1971). Monatsh. Chem. 102, 1055-1064.
Knollmuller, M. (1974). Monatsh. Chem. 105, 114-119.
Rizzoli, C., Sangermano, V., Calestani, G. \& Andreetti, G. D. (1976). CRYSRULER Package. Version 1.2 (Polish version). Univ. degli Studi di Parma, Italy.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of (22S)-3 β-Acetoxy-20-(3-isopropylisoxazolin-5-yl)-4,4,14 α -trimethylpregn-8(9)-ene

By Sergey V. Lindeman,* Mikael S. Alexanyan and Yuri T. Struchiov
Nesmeyanov Institute of Organoelement Compounds, Academy of Sciences of the USSR, 28 Vavilov Str., Moscow B-334, USSR
and Rajesh Kumar Thaper, Irina G. Reshetova and Alexey V. Kamernitzky
Zelinsky Institute of Organic Chemistry, Academy of Sciences of the USSR, 47 Leninskij Prosp., Moscow B-334, USSR

(Received 11 December 1990; accepted 25 June 1991)

Abstract

C}_{32} \mathrm{H}_{51} \mathrm{NO}_{3}, \quad M_{r}=497 \cdot 7\), orthorhombic, $P 2_{12} 2_{1}, \quad a=7.577$ (2), $\quad b=10.510$ (2), $\quad c=$ 35.399 (7) $\AA, \quad V=2819(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.173 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \quad \mu=$ $0.69 \mathrm{~cm}^{-1}, F(000)=1096, T=153 \mathrm{~K}, R=0.0497$ for 2235 observed reflections. The compound investigated is found to be a $(22 S)$-epimer.

Introduction. Steroids having a lanostane skeleton and oxygen function in their side chain at C22 exhibit some useful biological properties (Kamernitzky \& Reshetova, 1977). Isolation of such compounds from natural products and their

[^0]0108-2701/92/020290-03\$03.00
synthesis may be of considerable interest. We have synthesized two isomers [(22R) and (11S)] of 3β -acetoxy-20-(3-isopropylisoxazolin-5-yl)-4,4,14 α-tri-methylpregn-8(9)-ene (1). Biological activity of such steroid derivatives depends on the configuration of the C22 centre. Therefore the determination of chirality at the C 22 atom in one epimer is of primary importance especially taking into account that further transformations proceed without inversion at the C22 atom.

Experimental. The title compound (1) was prepared from 3β-acetoxy-25,26,27-trinorlanosta-8,22-diene (Poyser, Hirtzbach \& Ourisson, 1974; Akhrem, Khripach, Litvinovskaya \& Baranovsky, 1989) via (c) 1992 International Union of Crystallography

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{3}\right)$
U_{eq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	$U_{\text {eq }}$
C1	-4261 (6)	-8367 (5)	-1423 (1)	29 (1)
C2	- 3941 (6)	-8145 (5)	- 1001 (1)	33 (1)
C3	-2270 (6)	-8802 (4)	-875 (1)	30 (1)
C4	-602 (6)	-8423 (5)	-1092 (1)	32 (1)
C5	- 1013 (5)	-8536 (4)	-1524 (1)	25 (1)
C6	563 (5)	-8180 (5)	-1770 (1)	33 (1)
C7	269 (5)	-8554 (4)	-2175 (1)	28 (1)
C8	-1607 (5)	-8453 (4)	-2315 (1)	20 (1)
C9	- 2964 (5)	-8232 (4)	-2085 (1)	21 (1)
C10	-2737 (5)	- 7883 (4)	-1667 (1)	22 (1)
C11	-4854 (5)	-8180 (4)	-2236 (1)	24 (1)
C 12	- 5133 (5)	-8417 (4)	-2662 (1)	26 (1)
C13	-3518 (5)	-8038 (4)	-2890 (1)	20 (1)
C14	-1910 (5)	-8785 (4)	-2723 (1)	21 (1)
C15	-446 (5)	-8440 (4)	-3008 (1)	28 (1)
C16	-1400 (5)	-8454 (5)	-3395 (1)	29 (1)
C17	- 3431 (5)	-8446 (4)	-3313 (1)	23 (1)
C18	-3232 (6)	-6584 (4)	-2859 (1)	29 (1)
C19	-2675 (7)	-6409 (4)	-1655 (1)	33 (1)
C20	-4464 (6)	-7686 (4)	-3613 (1)	28 (1)
C21	-6452 (6)	-7632 (5)	-3531 (1)	33 (1)
C22	-4096 (6)	-8276 (4)	-4000 (1)	31 (1)
C23	- 5102 (6)	-7703 (5)	-4336 (1)	36 (1)
C24	-6386 (6)	-8751 (4)	-4418 (1)	31 (1)
C25	--7878 (7)	-8668 (5)	-4700 (1)	36 (2)
C26	-8099 (7)	-9884 (5)	-4924 (2)	49 (2)
C27	-9581 (7)	-8324 (6)	-4490 (2)	50 (2)
C28	-2042 (6)	-9357 (4)	-215 (1)	33 (1)
C29	-1821 (7)	-8782 (5)	172 (1)	45 (2)
C30	-2141 (6)	- 10244 (4)	-2741 (1)	30 (1)
C41	850 (7)	-9396 (6)	-991 (1)	48 (2)
C42	54 (7)	-7110 (5)	-977 (1)	42 (2)
03	-2013 (4)	-8465 (3)	-478 (1)	35 (1)
022	-4629 (4)	-9612 (3)	- 3993 (1)	37 (1)
O28	-2253 (6)	- 10468 (3)	-273 (1)	57 (1)
N24	-6110(5)	-9778 (4)	-4240 (1)	36 (1)
Perspective view of compound (1).				

1,3-dipolar cycloaddition of isopropylnitrile oxide. Suitable crystals of the individual epimer (m.p. $522-523 \mathrm{~K}$) were prepared by crystallization from EtOAc.
The X-ray intensity data from a colourless $0.30 \times$ $0.35 \times 0.85 \mathrm{~mm}$ crystal were collected with an automated Syntex $P 2_{1}$ four-circle diffractometer at 153 K using graphite-monochromated Mo $K \alpha$ radiation. The unit-cell parameters were determined on the basis of accurately measured positions of 24 reflections in the $13<\theta<14^{\circ}$ range. The intensities of 3733 reflections $(0 \leq h \leq 9, \quad 0 \leq k \leq 13, \quad 0 \leq l \leq 46)$ were measured using $\theta / 2 \theta$ scans (background/peak time ratio 0.25) in the θ range from 2.0 to 30.0° with a variable scan speed ($3 \cdot 0-30 \cdot 0^{\circ} \mathrm{min}^{-1}$ in ω). The intensities of two standard reflections (measured every 98 reflections) did not show any significant changes $[\delta(I)<3 \%$].

Table 2. Torsion angles (${ }^{\circ}$)

C10	Cl	C2	C3	- 58.8	C9	C8	Cl 4	Cl 5	152.8
Cl	C2	C3	C4	56.5	C9	C8	C14	C30	-87.5
C1	C2	C3	O3	176.2	C 12	Cl 3	C14	C8	-60.8
C2	C3	C4	C5	-50.2	Cl 2	C13	C14	C 15	173.4
C2	C3	C4	C41	- 167.0	C12	C 13	C14	C30	59.5
C2	C3	C4	C42	74.9	C 17	Cl 3	C14	C8	[74.9
O3	C3	C4	C5	-169.2	C17	Cl 3	C14	C15	49.1
O3	C3	C4	C41	74.0	C 17	Cl 3	C14	C30	-64.8
O3	C3	C4	C42	-44.1	Cl 8	Cl 3	C14	C8	58.7
C3	C4	C5	C6	-180.0	C18	Cl 3	C14	C15	-67.1
C3	C4	C5	C10	49.5	C18	Cl 3	Cl 4	C30	179.0
C41	C4	C5	C6	-63.8	C8	C14	Cl 5	C16	-160.7
C41	C4	C5	C10	$165 \cdot 6$	Cl 3	Cl 4	C15	C16	-39.1
C42	C4	C5	C6	55.8	C30	Cl 4	C15	C16	79.6
C42	C4	C5	C10	-74.7	C14	Cl 5	C16	C17	14.7
C4	C5	C6	C7	168.1	C 12	Cl 3	C17	C 16	-155.8
C10	C5	C6	C7	- 58.6	C 12	Cl 3	C17	C20	79.3
C5	C6	C7	C8	34.5	C14	Cl 3	C17	C16	- 39.4
C6	C7	C8	C9	-9.6	C14	Cl 3	C17	C20	-164.3
C6	C7	C8	C14	178.2	C18	Cl 3	C17	C16	77.9
C7	C8	C9	C10	8.5	C18	Cl 3	C17	C20	-47.0
C7	C8	C9	C11	-178.0	C 15	Cl 6	C17	C13	15.7
C14	C8	C9	C10	-179.7	C15	C16	C17	C20	145.5
C14	C8	C9	C11	-6.1	C13	C 17	C20	C21	- 57.9
C2	Cl	C10	C5	55.6	C13	C 17	C 20	C 22	178.5
C2	Cl	C10	C9	173.9	C16	Cl 7	C20	C21	-178.3
C2	Cl	C10	C19	-68.8	C16	C 17	C20	C22	$58 \cdot 1$
C4	C5	C10	Cl	-52.8	Cl 17	C20	C22	C 23	176.2
C4	C5	C10	C9	-174.2	Cl 7	C20	C22	O 22	58.4
C4	C5	C10	C19	69.1	C21	C 20	C22	C23	51.7
C6	C5	C10	Cl	176.0	C21	C20	C22	O 22	-66.1
C6	C5	C10	C9	54.6	C20	C22	C23	C24	-108.0
C6	C5	C10	C19	-62.1	O 22	C22	C23	C24	12.2
C8	C9	C10	Cl	- 148.8	C22	C23	C24	C25	$173 \cdot 1$
C8	C9	C10	C5	-30.5	C22	C23	C24	N24	-9.2
C8	C9	C10	C19	91.5	C23	C24	C25	C26	139.6
Cl 1	C9	C10	Cl	37.4	C23	C24	C25	C 27	-96.9
Cl 1	C9	C10	C5	155.6	N24	C24	C25	C26	-37.9
Cl 1	C9	C10	C19	-82.4	N24	C24	C25	C27	85.5
C8	C9	C11	C 12	1.2	C2	C3	O3	C28	116.9
C10	C9	Cl1	Cl 2	$175 \cdot 1$	C. 4	C3	O3	C28	- 118.8
C9	C11	C12	Cl 3	-27.8	C29	C28	O3	C3	-177.7
Cl 1	C12	C13	C14	55.5	O28	C28	O3	C3	0.7
Cl 1	Cl 2	C13	C17	168.7	C20	C22	O 22	N24	112.8
Cl 1	Cl 2	Cl 3	C18	-65.0	C23	C22	O 22	N24	-12.3
C7	C8	C14	C13	$-151 \cdot 1$	C23	C24	N24	O 22	1.9
C7	C8	C14	Cl 5	-34.9	C25	C24	N24	O 22	179.7
C7	C8	C14	C30	84.8	C22	O 22	N24	C24	6.9
C9	C8								

All calculations were performed with an IBM-PC/AT computer using SHELXTL-Plus (PC Version; Sheldrick, 1989). The intensities of 2235 independent observed $[I>3 \sigma(I)$] reflections corrected for Lorentz and polarization factors were used. The structure was solved using direct methods and refined by full-matrix least squares in anisotropic approximation for non- H atoms. H atoms were placed in calculated positions and refined isotropically with a fixed $U_{\text {iso }}=0.08 \AA^{2}$. The final refinement of 289 parameters converged to $R=0.0497, w R=$ $0.0498 \quad\left[w^{-1}=\sigma^{2}(F)+99 \cdot 000 F^{2}\right], \quad S=1 \cdot 17$, mean $(\Delta / \sigma)=0.170,0.23>\Delta \rho>-0.19 \mathrm{e} \AA^{-3}$.

Discussion. Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1.* The

[^1]molecular structure with atom numbering is shown in Fig. 1. Bond lengths and angles are unexceptional (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987; Duax \& Norton, 1975).

The determination of absolute configuration of the C22 chiral centre, which turned out to be S, was based on the known chirality of the steroid framework. The main torsion angles, which characterize the molecular conformation, are given in Table 2. The steroid framework conformation coincides with a standard for $\Delta^{8(9)}$-pregnanes (Duax \& Norton, 1975), viz. a chair for the A ring, a 5α-sofa for the B ring, a 13β-sofa for the C ring and a 14α-envelope for the D ring. The orientation of the side chain at C17, characterized by the torsion angle C16 $\mathrm{C} 17 \mathrm{C} 20 \mathrm{C} 21=-178 \cdot 3^{\circ}$, may be considered as sterically least strained. The oxazoline ring is in fact planar. The orientation of the 3β-acetoxy group
[with the carbonyl O and $\mathrm{H}(\mathrm{C} 3)$ atoms disposed close to each other] is similar to that usually observed in most of the analogous steroid derivatives (Duax \& Norton, 1975).

References

Akhrem, A. A., Khripach, V. A., Litvinovskaya, R. P. \& Baranovsky, A. V. (1989). Zh. Org. Khim. 25, 1901-1908.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: IFI/Plenum.
Kamernitzky, A. V. \& Reshetova, I. G. (1977). Khim. Prir. Soedin. pp. 156-186.
Poyser, J. P., Hirtzbach, F. R. \& Ourisson, G. (1974). Tetrahedron, 30, 977-983.
Sheldrick, G. M. (1989). SHELXTL-Plus Structure Determination Software Programs. PC Version. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Structure of Propyl 3-Acetyl-4-[2-hydroxy-3-(isopropylamino)propoxy|carbanilate Hydrochloride

By V. Kettmann
Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Czechoslovakia
J. Csöllei
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Czechoslovakia

and J. JeČný
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Praha 6, Czechoslovakia
(Received 26 January 1991; accepted 26 June 1991)

Abstract

C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}^{+} . \mathrm{Cl}^{-}, M_{r}=388.9\), monoclinic, $C 2 / c, a=42.014$ (8), $b=5.054$ (1), $c=30.023$ (5) \AA, $\beta=139.84$ (4) ${ }^{\circ}, \quad V=4111.4$ (6) $\AA^{3}, \quad Z=8, \quad D_{m}=$ 1.25 (1), $\quad D_{x}=1.256 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $1.54178 \AA, \quad \mu=0.94 \mathrm{~mm}^{-1}, \quad F(000)=1664, \quad T=$ $293 \mathrm{~K}, R=0.052$ for 1974 unique observed reflections. The structure consists of discrete cations connected by hydrogen-bonded chloride anions. The arrangement of the aryloxy and 2-hydroxyl groups around the conformationally flexible $\mathrm{OCH}_{2}-$ $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2}$ bond of the oxypropanolamine side chain is gauche. While the lone-pair electrons of the ethereal oxygen are definitely delocalized through the adjacent phenyl ring, the results do not reveal any significant conjugation of the carbamate and acetyl groups with the aromatic system.

Introduction. This work is part of a more general study on conformational properties of a new series of β-adrenoceptor blocking drugs belonging to the aryloxypropanolamine family. Another interest in the present structure results from the observation that while the title compound is a highly potent β-adrenoceptor antagonist, its positional isomer, having interchanged the acetyl and carbamate functions on the aromatic ring, has been found to be totally inactive (Csöllei, Račanská, Švec \& Kettmann, 1991). The inactivity of the latter was attributed to the positive molecular electrostatic potential (MEP) generated by the π-deficient phenyl ring as a result of through-conjugation between the ethereal oxygen and the acceptor acetyl group (Kettmann, 1991). Consequently, the structure deter-

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, full bond lengths and angles, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54394 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

